NOTATION

g(r), heat flux at surface of plate; t(x, 7) temperature at the point x; n(x, 7), noise of temperature
measurement; E(x, 7), temperature measured at the point x; 7, time; t and g, vectors composed of the values
of the functions t(x, 7) and g(r); H, matrix approximating the original integral equation; o, regularization
parameter.
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NUMERICAL ALGORITHM FOR THE SOLUTION OF LINEAR
TWO-DIMENSIONAL INTEGRAL EQUATIONS OF THE FIRST KIND

V. D. Perminov UDC 526.24.01

A numerical algorithm is proposed for the solution of two-dimensional integral equations
of the first kind, to which some inverse problems of heat conduction are reduced.

It is known that many problems of practical importance in the analysis of experimental results lead to
the solution of a linear integral equation of the first kind in a rectangular region (for example, thermophysical
problems of the determination of the heat flux to axisymmetric and plane bodies from the assigned time de~
pendence of the temperature at part of the boundary of the region, the geophysical problem of the interface
between two media with different densities, and others):

Af = j f K(x, y, s, Of(s, tydsdt = (x, y), )
Dy

x, yeD={0<x<, 0<y<l); s t€Dy(x y<=D.

The problem of the solution of such an equation is, generally speaking, incorrectly stated. If the solution of
Eq. (1) is unigue for an assigned right side ¢ (x, y) then the solution f(s, t) can be obtained by the regulariza-
tion method proposed by Tikhonov {1, 2]. In accordance with this method an approximate solution f¢ (s, t) is
defined as a function yielding the minimum of the functional

ME1E, 4= [ [ 1Af — 1 dxdy + o | [{pif+- pofs
D D

+ paft - BIpSS + pofie + pefad} dsdt, 2

in which the value of the regularization parameter o must conform with the level of the root-mean-square
error 6 of the right side. In the functional (2) the quantities pjs, ) >0 { =1, 2, ..., 8) are assigned func~
tions and 8 =0 or 1 in first- or second-order regularization, respectively.

In [3] an algorithm was proposed for the solution of the variational problem (2) for the one-dimensional
equation (1), based on the approximation of the unknown solution by cubic splines [4]. The effectiveness of the
algorithm, verified on the problem of solving the Abel equation [3] and the problem of reconstructing a distri-
bution function [5], is explained to a considerable extent by the properties of the convergence of cubic splines

Translated from Inzhenerno-Fizicheskii Zburnal, Vol. 383, No. 6, pp.1103-1108, December, 1977. Orig-
inal article submitted April 5, 1977.

0022-0841/77/3306-1493$07.50© 1978 Plenum Publishing Corporation 1493



(with a decrease in the interpolation step the values of the spline and of its first and second derivatives con-
verge uniformly to the values of the approximated function and its derivatives ).

In the present paper this algorithm is applied to linear two-dimensional integral equations of the first

kind,

Let us partition the unit square into (N — 1)? small squares hy the lines sji =h@{i ~—1) and t =h( —1),

h=1/N-1),i,j=1, 2,

..+ N) and define the N fundamental splines Aj(s) by the following relatlons

Ais) =60 =12 ..., N), A(s)=0(¢=12 ..., N;
i=1 N)

. Then the function f(s, t), which satisfies the conditions

1. fs—OaltthenodesP1 i=1,N;j=1,2, ..., N,
2. ft =0 at the nodes P;; (4 =1, 2, N]—l,N),
3. fst —OatthenodesPu i=1, N;j =1, N)

at the boundary of the region, can be approximated by the doubly cubic spline [4]

N
[ =S s = A 40 (s 1))
i, j=1
Substituting this expression for f (s, t) into the functional (2), we have
N 11
MELF 9= N Fuifn [ 90060 90 n (x, y) dxdy
00

i, f.m,n=1

‘ L]
[ $(x, 9)dy0x y) dedy+ [V 1 (x, )2 dxdy
° 0%

[ e

N
—2 qu
=

i,j=1

to 2 f,,f,,.njy{A () A;O) A (9) A, ()

ii,myn=1
-+ A; (s) Aj @® A,,,(s) /l,l @ + A, () Af ® Am (s A,,(t)
+ BIA] () A; (1) Am () A, (&) + A: (89 A7 () A () An (8)
4 A7 (8) A; () A () A (1))} dsdt,

where

Sy ) = [[ K g s, )4 (5) Ay (8) dsat.
D,

3)

@)

(5)

(6)

(N

Now, if one uses the quadrature equation with the coefficients B,, and the same system of nodes to calculate
the outer integral over the rectangular region, and one uses the definition (3), then the functional (6) is con-

verted to the form

N N
M*(f, ¢] = 2 (M,’l}m +a7~51?:3m) fisfmn —2 2 wisfij = ¢
£,fom.n=1 ij=1 -

N
A’S’lel: 2 qu‘,ii(xp, yq)']mn(xp' yq)’

p.g=!

512")"‘ = 2 qu {61p61q6mp6nq + [A (SF) Am (SP)

Pq=1
+ BAL (¢)) Am (5p)]1 8580 + (A7 (2 An(t,) + BA] (£) An U 818,
+ BA! () A] (2) Am (55) An ()},
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Fig. 1. Dependence of the solutionf on x withy =0.25 (1) and y =0.5 (2); 2) A = 0; @gpt = 10714
b) A =0.002; agpt =107 ¢) A =0.01; agpt = 3.16-107".

A
"

N .
Wiy = 2 quJij(xP’ yq)w(xp’ yq)’

p.q=l1

N
C = 2 qu [‘q’(xpi yq)lz"

p.g=1

From (8) and (8) it is easy to see that 7\1( inn = A(i and n= A(lzmm-., Now we introduce a new numbering
of the nodes in the unit square, connected with the old one y the relatlons k=Ni—~—1)+jandl =N(m — 1) +
nk,?=1,2, ..., N). Then

MEIf, ¥l = }; Mtfufs —2 Eﬂkfk‘f‘c ®

k,1=1

where Ay; = }‘(If:} + ozh(f{)l is a symmetric matrix. The condition of steadiness of the functional (9) has the form

NZ
Shafo=w (=12 ..., ¥, (10)
k=1

i.e., the problem of finding the minimum of the functional (2) is reduced to the problem of solving a system
of N? linear algebraic equations with a symmetric matrix of coefficients.

Let us dwell on some of the possibilities and computational properties of the proposed algorithm.

1. The algorithm is universal in the class of equations of the type of (1) in the sense that using it one can
solve integral equations of the first kind for which the kernel has a weak singularity.

2. The algorithm provides a second order of regularization (with g =1),

3. It is clear that in the realization of the algorithm the greater part of the computer time must be ex~
pended on the calculation of the integrals Jij (xp, yq). In this connection we note that since Aj(s) are piecewise~
cubic functions, for a rather broad class of kernels these integrals can be calculated in quadratures. Such
a situation occurs, in particular, in many inverse problems of heat conduction where the kernel of the integral
equation consists of a series, each term of which contains functions of the types sinmmzx, cosmmx, and exp
[~mm2@¢ — 7)]. Inthese problems the calculation of Jij (xps yg) comes down to the calculation of the sum of a
rapidly converging series.) If this cannot be done, then for the given kernel and a fixed grid these integrals
(and consequently the coefficients Aﬁ)l and }‘kl)) are calculated once and can be stored in external coraputer
memories. Then for each right side (new experiment) one calculates only the N* coefficients py. From what
has been said it follows that in a mass calculation of variants most of the time will be expended in the repeated
solution of the system of equations (10) with different values of the regularlzatlon parameter, In the process
the matrix elements A7 for each ¢ are calculated from the elements )\k and )‘1(<21) of the stored arrays by the
formula Ay = (1) "'a}‘(k)l

4. The fact that the matrix of coefficients Ay; is symmetrical for any @ makes it possible to store only
the upper or lower triangular parts of the matrix. For large enough N this procedure allows one to reduce the
required volume of the internal computer memory by almost half (or, with a given volume of internal memory,
to increase the number N).
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The proposed algorithm was realized in the form of a program in the FORTRAN language and tested
on the model problem of the solution of the integral equation

1

1
[T F6 Dl — 02+ ¢ — 9P + 117372 dsdt = b (x, g). an
00

The geophysical problem of determining the surface f(x, y) separating two media of different densities from
the data of gravimetric measurements y(x, y) at the earth's surface is reduced to an equation of this type [6, T].

The test of the correctness and efﬁciency of operation of the program was carried out as follows: Using
(11) the right side y(x, y) was calculated with the maximum possible accuracy for f(s, t) = 4096(s — s3)3¢ —t?)®
and then from it f(x, y) was reconstructed using the described algorithm.

In the solution of this problem it was assumed that p; =1 (¢ =1, 2, ..., 6) and regularization of the first
and second orders was used. The errors inherent to the obtainment of the experimental data were modeled by
imposing a random disturbance onto ¥ (x, y); i.e., instead of y(x, y) we assigned the function y*(x, y) = y(x, y)+
nA in the calculations, where 7 is a random quantity uniformly distributed in the interval [—1, 1] and A is some
constant multiplier. The calculations were carried out with N =9 and N =13 (N =13 is close to the extreme
possible number of nodes over each of the variables when only the internal computer memory is used to store
the matrix of coefficients Ay;). The regularization parameter o was chosen by the method of the quasibest
approximation [2, 7].

The results of the calculations in the form of the dependence f(x, y) for N =13, g =1, and A =0, 0.002,
and 0.01 are presented in Fig. la, b, and c¢. In this figure the solid curves are the exact solution of the prob-
lem, whilethe points are the results of the numerical solution using the proposed algorithm. With A =0 (exact
right side) the maximum error in the reconstruction of 7(x, y) occurs at the boundary of the region and com-
prises 1-2% of mai()f(x, y) . With A =0.,002 and 0.01 (the error in ¢ (x, y) comprises ~1 and ~5% of the maxi~

X, ye.

mum value of §(x, y), respectively) the errors in the reconstruction of f(x, y) for different sequences of ran-
dom numbers 7 are equal to 5-7 and 15-18% of max f(x, y) . The accuracy of the reconstruction of f(x, y) de-
%.9€D

creases somewhat with N =9 or g8 =1 (first-order regularization).

On the whole, the analysis of the results of the methodical calculations performed allows one to conclude
that the proposed algorithm for the solution of equations of the type of (1) is workable and efficient,

NOTATION

K, y, s, t), kernel of the integral equation; f(s, t), unknown solution of integral equation; y (x, y),
right side of integral equation; D, unit square; M [f, y], Tikhonov's regularizing functional; ¢, regulariza-
tion parameter; pj(x, y) 4 =1, 2, ..., 6), assigned positive functions; g, parameter of order of regulariza-
tion; N, number of nodes over each of the variables x and y; h, step of the grid; Aj(s) (s =1, 2, ..., N),
fundamental cubic splines; N ; &k, I =1, 2, ..., N?), coefficients of a symmetric matrix;u (k=1,2, .. .,NZ),
vector components of the right sides of the system of linear equations,
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