
N O T A T I O N  

g(T), heat  flux at su r face  of plate;  t (x,  T) t e m p e r a t u r e  at  the point x; n(x, T), noise of t e m p e r a t u r e  
m e a s u r e m e n t ;  t (x,  T), t e m p e r a t u r e  m e a s u r e d  at  the point x; ~, t ime;  t and g,  vec to r s  composed  of the values  
of the functions t (x,  ~) and g(T); H, m a t r i x  approx imat ing  the or iginal  in tegra l  equation; a ,  r egu la r iza t ion  
p a r a m e t e r .  
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N U M E R I C A L  A L G O R I T H M  F O R  T H E  S O L U T I O N  O F  L I N E A R  

T W O - D I M E N S I O N A L  I N T E G R A L  E Q U A T I O N S  OF T H E  F I R S T  K I N D  

V. D. Perminov UDC 526.24.01 

A numer i ca l  a lgor i thm is p roposed  fo r  the solution of two-d imens iona l  in tegra l  equations 
of the f i r s t  kind, to which some i nve r se  p rob lems  of heat conduction a r e  reduced.  

It is known that many problems of practical importance in the analysis of experimental results lead to 
the solution of a linear integral equation of the first kind in a rectangular region (for example, thermophysical 
problems of the determination of the heat flux to axisymmetric and plane bodies from the assigned time de- 
pendence of the temperature at part of the boundary of the region, the geophysical problem of the interface 
between two media with different densities, and others): 

A I = S ~ , ( x ,  v, s, t)f(s, t)d~dt=,(x, y), 
Dj. 

x, y C D = { O ~ x ~ l ,  O ~ y ~ l } ;  s, tED,(x, y )~D.  

(1) 

The p rob l em of the solution of such an equation i s ,  genera l ly  speaking,  i nco r rec t ly  s ta ted .  If the solution of 
Eq.  (1) is  unique for  an ass igned r ight  side ~(x, y) then the solution f ( s ,  t) can be obtained by the r e g u l a r i z a -  
t ion method proposed  by Tikhonov [1, 2]. In accordance  with this method an approx imate  solution fc~ (s, t) is 
defined as a function yielding the min imum of the functional 

D D 

(2) 

in which the value of the regu la r iza t ion  p a r a m e t e r  a mus t  conform with the level  of the r o o t - m e a n - s q u a r e  
e r r o r  6 of the r ight  s ide.  In the functional (2) the quanti t ies  Pi(S, t) > 0 (i = 1, 2, . . . ,  6) a r e  ass igned  fmlc-  
t ions and fl = 0 or  1 in f i r s t -  or  s e c o n d - o r d e r  r egu la r i za t ion ,  r e spec t ive ly .  

In [3] an a lgor i thm was proposed fo r  the solution of the var ia t iona l  p rob lem (2) for  the one-d imens iona l  
equa t i on  (1), based  on the approx imat ion  of the unknown solution by cubic spl ines  [4]. The e f fec t iveness  of the 
a lgor i thm,  ver i f i ed  on the p rob lem of solving the Abel equation [3] and the p rob l em of r econs t ruc t ing  a d i s t r i -  
bution function [5], is  explained to a cons iderab le  extent by the p r e p e ~ i e s  of the convergence  of cubic spl ines  

T rans l a t ed  f r o m  Inzhenerno-F iz i chesk i i  Zhurnal ,  Vol. 33, No. 6, pp .1103-1108,  D e c e m b e r ,  1977. Or ig -  
inal a r t i c le  submi t ted  Apr i l  5, 1977. 
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(with a d e c r e a s e  in the in t e rpo la t ion  s tep  the va lues  of the sp l ine  and of i ts  f i r s t  and second  d e r i v a t i v e s  con-  
v e r g e  un i fo rmly  to  the va lues  of the a p p r o x i m a t e d  funct ion and i ts  de r i va t i ve s  [4]). 

In the p r e s e n t  p a p e r  this  a l g o r i t h m  is appl ied  to  l i nea r  t w o - d i m e n s i o n a l  i n t eg r a l  equat ions  of the f i r s t  
kind.  

Le t  us pa r t i t i on  the  unit  squa re  in to  (N --  1) 2 s m a l l  s q u a r e s  by the l ines  s i = h(i --  1) and tj = h(j --  1), 
(h = 1 / (N --  1), i ,  j --= 1, 2, . . . ,  N) and def ine  the  N fundamenta l  sp l ines  Ai(s) by the fol lowing re l a t ions :  

A~(sj)=~i u (i, i =  I, 2 . . . . .  N), A~(s j )=0 ( i =  1, 2 . . . . .  N; 

1 =  1, N}. 

. Then  the funct ion f ( s ,  t ) ,  which s a t i s f i e s  the condi t ions  

1. f s  = 0 at  the nodes  Pij  (i = 1, N; j = 1, 2,  . . . ,  N), 
2. f t  = 0 at  the nodes Pij  (i = 1, 2 . . . . .  N; j = 1, N), 
3. f s t  = 0 at the  nodes  Pi j  (i = 1, N; j = 1, N) 

at  the  boundary  of the r eg ion ,  can be a p p r o x i m a t e d  by the doubly cubic spl ine [4] 

N 

f (s, t) ~ s if; s, t) = ~ A~ (s) Aj (t) f (s. b). 
i,]=l 

Subst i tu t ing th is  e x p r e s s i o n  f o r f ( s ,  t) into the  funct iona l  (2), we have 

N 1 1 

M~Z [~, ~] = ~ flffmn ySJo (x, y) Jmr~ (X, y) dxdy 
i,/,m,n=l O0 

N I 1  1 1 

i,]~l 0 0 0 0 
N I I  

-I-~ ~j [I,[m, SS{A,(s)A~(t)Am(s)A,(t) 
i,],m,n=l 0 0 

-}: A~ (s) A~ (t) A~, (s) A,~ (t) + A, (s) ,4~ (t) A,~ (s) A~ (t) 

§ ~ [A~. (s) Aj (t) A~ (s) A~ (t) -i- A~ (s) A7 (t) .4,, (s) A: (t) 
+ A~ (s) A} (t) As (s) A~ It)I} dsdt, 

whe re  

Ju (x, y) = SS K (x, y, s, l) A i (s) AI (t) dsdt. 
D, 

Now, If one u s e s  the  q u a d r a t u r e  equat ion  with the coef f i c ien t s  Bpq and the s a m e  s y s t e m  of nodes  to ca lcu la te  
the  ou te r  i n t eg r a l  o v e r  the  r e c t a n g u l a r  r eg ion ,  and one uses  the  def in i t ion  (3), then  the funct ional  (6) i s  con-  
v e t t e d  to  the f o r m  

N N 

MS[f' ~P] = Z ,,(O (2) ~t/mn -~ ~)~i/m,) fiJfmrt - -2  Z ~tlJfiJ "~ C, 
i,l,m,n~l i ,/=l 

N 
lirnn = Z BPqJu (Xp, yq) Jra~ (xv' Yq), 

p , q = l  

N 

l/ran = ~ Bpq {~ipS]q~mpSnq 2 N [A~ (s,) As (s,) 
p,q=l 

+ ~A; (6) A~ %)I ~j:.q + [A~ (q) A; (t~) + ~A; (q) A: (t 018,~8~,, 
+ ~A; (s,) A} (tq) A'~ (sp) A: (tq)}, 

(3) 

(4) 

(5) 

(6) 

(7) 

(s) 
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Fig. 1. Dependence of the so lu t ion f  on x with y = 0.25 (1) and y = 0.5 (2); a) A = 0; aopt  = 10-11; 
b) A = 0.002; aopt  = 10-8; c) A = 0.01; trop t = 3.16.10 -7. 

N 

~t u = ~.~ BpqJ u (x v, yq) ~ (xp, yq), 
p,q~l 

N 

c = ~ Bpq [~(xp, gq)l ~. 
p,q~l 

F r o m  (6)and (8)i t  is easy to see that ~'i)mn = X~)ni i and ~ n n  : k(~" Now we introduce a new numbering 
of the nodes in the unit square ,  connectgd with the 51d one by the relations k = N(i --  1) + j and l = N(m -- 1) + 
n (k, l =1 ,  2, . . . ,  N2). Then 

N~ N ~ 

M ~ If, ,J  = ' ~  ~t~f~ - 2 y .  ~f~ + ~, (9) 
k , l=l  k ~ l  

where kk/ = k ~  + c~h(~l is a symmet r i c  matr ix .  The condition of steadiness of the functional (9) has the form 

N ~ 

~,,,,f,, = ~,  (t = 1, 2 . . . .  , ~ 2 ) ,  ( 1 0 7  

i.  e . ,  the problem of finding the minimum of the functional (2) is reduced to the problem of solving a sys tem 
of N 2 l inear  a lgebraic  equations with a s y m m e t r i c  matr ix  of coefficients.  

Let us dwell on some of the possibi l i t ies  and computational proper t ies  of the PrOPosed algori thm.  

1. The a lgor i thm is universal  in the c lass  of equations of the type of (1) in the sense that using it one can 
solve integral  equations of the f i rs t  kind for  which the kernel  has a weak singular i ty.  

2. The a lgor i thm provides a second order  of regular iza t ion (with/3 = 1). 

3. It is c lear  that in the real izat ion of the a lgor i thm the g r ea t e r  par t  of the computer  t ime must  be ex -  
pended on the calculation of the integrals  Jij (Xp, yq). In this connection we note that since A i (s) a re  piecewise-  
cubic functions,  for  a r a t h e r  broad class  of kernels  these integrals  can be calculated in quadra tures .  (Such 
a situation occurs ,  in pa r t i cu la r ,  in many inverse  problems of heat conduction where the kernel  of the integral  
equation consis ts  of a s e r i e s ,  each t e r m  of which contains functions of the types sinxrnx, cosnmx,  and exp 
[--Tr2m2(t --  T)]. In these problems the calculation of Jij (Xp, yq) comes down to the calculation of the sum of a 
rapidly converging s e r i e s .  ) If this cannot be done, then for  the given kernel  and a fixed gr id  these in tegrals  
(and consequently the coefficients h~t and ~(k2~) are  calculated once and can be s tored  in external  coraputer 
m e m o r i e s .  Then for  each right side (new experiment) one calculates only the N 2 coefficients #k- F r o m  what 
has been said it follows that in a mass  calculation of var iants  most  of the t ime will be expended in the 'repeated 
solution of the sys t em of equations (10) with different values of the regular izat ion pa rame te r .  In the p rocess  
the mat r ix  elements  Xkl for  each a are  calculated f rom the elements and k ~  of the s tored  a r r a y s  by the 

formula  k k l :  k(~) l + a i ( ~ l .  

4. The fact that the mat r ix  of coefficients ~kl is symmet r i ca l  for any a makes it possible to s to re  only 
the upper or  lower t r iangular  par ts  of the mat r ix :  For  large  enough N this p rocedure  allows one to reduce the 
required volume of the internal  computer  m e m o r y  by a lmost  half' (or, with a given volume of internal  memory ,  
to inc rease  the number  N). 
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The proposed a lgor i thm was rea l ized in the form of a p rogram in the FORTRAN language and tested 
on the model problem of the solution of the integral  equation 

l 1 

f t o - + ( t -  + 
O 0  

1]-3/2dsdt = ~(x, y). (11) 

The geophysical  problem of determining the surface  f (x ,  y) separat ing two media of different densit ies f rom 
the data of g rav ime t r i c  measurements  @{x, y) at the ea r th ' s  surface is reduced to an equation of this type [6, 7]. 

The tes t  of the co r r ec tnes s  and efficiency of operation of the p rogram was ca r r i ed  out as follows: Using 
(11) the right side r y) was calculated with the maximum possible accuracy  for f ( s ,  t) = 4096(s -- s2)3(t --t2) 3 
and then f rom it f (x ,  y) was recons t ruc ted  using the descr ibed algori thm. 

In the solution of this problem it was assumed that Pi = 1 (i = 1, 2, . . . ,  6) and regular izat ion of the f i r s t  
and second o rde r s  was used.  The e r r o r s  inherent  to the obtainment of the experimental  data were modeled by 
imposing a random dis turbance onto @(x, y); i . e . ,  instead of @(x, y) be  assigned the function r y) = @(x, y)+ 
~A in the calculat ions,  where ,} is a random quantity uniformly distributed in the interval  [--1, 1] and A is some 
constant mult ipl ier .  The calculat ions were ca r r i ed  out with N = 9 and N = 13 (N = 13 is close to the ext reme 
possible number  of nodes over  each of the var iables  when only the internal  computer  memory  is used to s tore  
the mat r ix  of coefficients ~'kl). The regular izat ion p a r a m e t e r  ~ was chosen by the method of the quasibest 
approximation [2, 7]. 

The resul t s  of the calculations in the form of the dependence f (x ,  y) for N = 13, fl = 1, and A = 0, 0.002, 
and 0.01 are  presented in Fig. l a ,  b, and c. In this figure the solid curves  are  the exact solution of the prob-  
lem, whilethe points a re  the resu l t s  of the numer ica l  solution using the proposed algori thm. With A = 0 (exact 
right side) the maximum e r r o r  in the recons t ruc t ion  o f f ( x ,  y) occurs  at the boundary of the region and com-  
pr i ses  1-2% of ma x[ ( z ,  y) . With A = 0.002 and 0.01 (the e r r o r  in ~(x, y) compr i ses  ~1 and ~5% of the maxi -  

x ,  Y e D  

mum value of @(x, y), respectively) the e r r o r s  in the reconst ruct ion of f (x ,  y) for different sequences of ran-  
dom numbers  ~ a re  equal to 5-7 and 15-18% of max f(x,  y) . The accuracy  of the reconstruct ion o f f ( x ,  y) de-  

x,y~,D 

c r ea s e s  somewhat with N = 9 or  fl = 1 ( f i r s t -o rde r  regularizat ion) .  

On the whole, the analysis  of the resul ts  of the methodical  calculations per formed allows one to conclude 
that the proposed algori thm for  the solution of equations of the type of (1) is workable and efficient. 

N O T A T I O N  

K(x, y, s, t), kernel of the integral equation; f(s ,  t), unknown solution of integral equation; r y), 
right side of integral equation; D, unit square; M s If, r Tikhonov's regularizing functional; ~, regulariza- 
tion parameter; Pi(x, y) (i = 1, 2, . . . ,  6), assigned positive functions; fl, parameter of order of regulariza- 
Lion; N, number of nodes over each of the variables x and y; h, step of the grid; Ai(s) (s = 1, 2 . . . . .  N), 
fundamental cubic splines; Xkl (k, I = i ,  2, . . . ,  N2), coefficients of a symmetrlem~Lrix;uk(k=l,2 . . . . .  172), 
vector components of the right sides of the system of linear equations. 
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